
1. Introduction
There is already scientific certainty that global heating is changing the climate, but understanding exactly how the 
climate will change and the potential impacts is an open problem. Increasingly, artificial intelligence techniques, 
such as neural networks, are being used to better understand climate change (e.g., Ham et al., 2019; Huntingford 
et al., 2019; Rolnick et al., 2019; Cowls et al., 2021), but as neural network techniques become evermore ubiq-
uitous, there is a growing need for methods to quantify their trustworthiness and uncertainty (Li et al., 2021; 
Mamalakis et al., 2021). Following Sonnewald and Lguensat (2021), we define a method to be trustworthy if 
its results are explainable and interpretable, and therefore these two concepts are somewhat linked as improving 
uncertainty quantification also improves result interpretability. Quantifying uncertainty using classical neural 
networks is particularly difficult because they lack the ability to express it and are often overconfident in their 
results (Joo et al., 2020; Mitros & Mac Namee, 2019). A range of techniques have been used to address this 
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implementing a Bayesian Neural Network (BNN), where parameters are distributions rather than deterministic, 
and applying novel implementations of explainable AI (XAI) techniques. The uncertainty analysis from 
the BNN provides a comprehensive overview of the prediction more suited to practitioners' needs than 
predictions from a classical neural network. Using a BNN means we can calculate the entropy (i.e., uncertainty) 
of the predictions and determine if the probability of an outcome is statistically significant. To enhance 
trustworthiness, we also spatially apply the two XAI techniques of Layer-wise Relevance Propagation (LRP) 
and SHapley Additive exPlanation (SHAP) values. These XAI methods reveal the extent to which the BNN is 
suitable and/or trustworthy. Using two techniques gives a more holistic view of BNN skill and its uncertainty, 
as LRP considers neural network parameters, whereas SHAP considers changes to outputs. We verify these 
techniques using comparison with intuition from physical theory. The differences in explanation identify 
potential areas where new physical theory guided studies are needed.

Plain Language Summary Understanding ocean dynamics and how they are affected by global 
heating is crucial for understanding climate change impacts. Neural networks are ideally suited to this problem, 
but do not explain how they make predictions nor express how certain they are of the predictions' accuracy, 
which considerably limits their trustworthiness for ocean science problems. Here, we address both issues by 
using a “Bayesian Neural Network” (BNN), which directly expresses prediction uncertainty, and applying 
explainable AI (XAI) techniques to explain how the BNN arrives at its prediction. The BNN provides a 
comprehensive overview more suited to addressing the core problem than that provided by classical neural 
networks. We also apply two XAI techniques (SHAP and LRP) to the BNN and evaluate their trustworthiness 
by comparing the similarities and differences between their explanations with intuition from physical theory. 
Any differences offer an opportunity to develop physical theory guided by what the BNN considers important.
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uncertainty quantification issue (Guo et al., 2017) and a particularly common one is to use an ensemble of deep 
learning models (e.g., Beluch et al., 2018). However, choosing a good ensemble of models is non-trivial (see 
Scher & Messori, 2021) and may be computationally expensive because it requires the network to be trained 
multiple times. This lack of uncertainty analysis limits the extent to which classical neural networks can be useful 
for ocean and climate science problems. For example, lack of knowledge of uncertainties in future projections of 
sea level rise limits how effective coastal protection measures can be for coastal communities (Sánchez-Arcilla 
et al., 2021). Measures of uncertainty are also important for out-of-sample predictions, which are common in 
climate change science because neural networks must be trained on historical data and applied to a changed 
climate scenario where the dynamics governing a region may have fundamentally changed. Thus, quantify-
ing uncertainty within a climate application is of paramount importance as decisions based on neural network 
predictions could have wide ranging impacts. Moreover, there can be distrust of neural network predictions in 
the climate science community because of the potential for spurious correlations giving rise to predictions that 
are nonphysical. Predictions are more trustworthy if they are explainable (i.e., if the reason why the network 
predicted the result can be understood by members of the climate science community). However, adding explain-
ability techniques to uncertainty analysis is an understudied area.

In this work, we address both issues of uncertainty and trustworthiness by implementing a Bayesian Neural 
Network (BNN) (Jospin et al., 2020) with novel implementations of explainable AI techniques (known as XAI) 
(Samek et  al.,  2021). We focus on applying this technique to assess uncertainty in dynamical ocean regime 
predictions due to a changing climate following the THOR (Tracking global Heating with Ocean Regimes) 
framework (Sonnewald & Lguensat, 2021). This is the first time Bayesian Neural Networks (BNNs) have been 
used to predict large-scale ocean circulations, although they have been used for localized streamflows in Rasouli 
et  al.  (2012, 2020). Our work is particularly pertinent with a recent IPCC Special Report (Hoegh-Guldberg 
et al., 2018) highlighting uncertainty in ocean circulation as a key knowledge gap area that must be addressed. 
Both (Sonnewald & Lguensat, 2021) and our work are designed to predict future changes to ocean circulation 
using data from the sixth phase of the Coupled Model Intercomparison Project (CMIP) (used in IPCC reports) 
(Eyring et al., 2015). We note however that, as CMIP6 is a large international collaboration, data dissemina-
tion and quality control can be difficult, which in turn limits the capability for good analysis. Sonnewald and 
Lguensat (2021) is an example of using sparse data in this context, and resolving this issue generally is an area of 
ongoing research (Eyring et al., 2019).

Unlike classical neural networks, BNNs make well-calibrated uncertainty predictions (Jospin et al., 2020; Mitros 
& Mac Namee, 2019) and clearly inform the user of how unsure the outcome is. This provides a more compre-
hensive description of the neural network prediction compared to a classical neural network and one which better 
meets the needs of climate and ocean science researchers. Furthermore, the uncertainty measures provided by the 
BNN approach can help reveal whether a new unseen datapoint is out-of-distribution relative to the training data 
(see e.g., Jospin et al., 2020). For example, it is known that the wind stress over the Southern Ocean will change 
in the future, with implications for the dynamics key to maintaining global scale heat transport. However, the 
region already has extreme conditions, so a change here could result in entirely new dynamical connections. The 
BNN outputs would allow us to understand if the new conditions are out-of-distribution compared to the original 
training data and thus whether the BNN's categorization of the dynamical regime for the new conditions can still 
be trusted. This uncertainty analysis is possible in BNNs because the weights, biases and/or outputs are distribu-
tions rather than deterministic point values. Moreover, these distributions mean BNNs can easily be used as part 
of an ensemble approach (a very common approach in climate science), by simply sampling point estimates from 
the trained distributions to generate an ensemble (Bykov et al., 2020).

Using BNNs is a large step toward trustworthy predictions, but results also gain considerable trustworthiness 
to climate researchers and practitioners if their skill is physically explainable. Note that throughout we define 
explaining skill to mean explaining the correlations between the input features that give rise to the predictions. 
Governments and regulatory bodies are also increasingly imposing regulations that require trustworthiness in AI 
processes used in certain decision-making (see Cath et al., 2018) and imposing large fines if the standards are 
not met (see e.g., recent directives from the European Commission 2021 and the USA government [E.O. 13960 
of 3 December 2020]). XAI techniques can be used to explain the skill of neural networks (Arrieta et al., 2020; 
Samek et al., 2019, 2021), but there has been little work combining explainability with uncertainty analysis in 
part because the distributions in BNNs add extra complexity. In this work, we adapt two common XAI techniques 
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so that they can be used to explain the skill in BNN results for one of the first times: Layer-wise Relevance 
Propagation (LRP) (Binder et al., 2016) (previously applied using the same approach in Bykov et al., 2020) and 
SHapley Additive exPlanation (SHAP) values (Lundberg & Lee, 2017) (previously applied in Cui et al. (2019); 
Yao et al. (2021) but using a different approach). These XAI methods reveal the extent to which the BNN is fit 
for purpose for our problem. Moreover, our approach means we can gain a reliable notion of the confidence 
of the explanation, which has been highlighted as a key area where XAI techniques must improve (Lakkaraju 
et al., 2022). Applying our XAI techniques to BNNs trained on real-world ocean circulation data in an application 
designed to understand future climate has the added benefit that we are able to validate and confirm these novel 
applications of XAI using physical understanding of ocean circulation processes, improving confidence in our 
BNN predictions. Thus, our novel framework is able to quantify uncertainty and improve trustworthiness (i.e., 
explainability and interpretability) in predictions, marking a significant step forward for using neural networks in 
climate and ocean science.

In this work, we choose to apply two different XAI techniques specifically to gain a holistic view of the skill of 
the BNN as LRP considers the neural network parameters whereas SHAP considers the impact of changing input 
features on the BNN outputs. This is important to ensure that what the BNN has learned is genuinely rooted in 
physical theory. The two different approaches also give a more overall impression of uncertainty as they capture 
different aspects with LRP capturing model uncertainty and SHAP capturing prediction sensitivity to this model 
uncertainty. Furthermore, by considering two different techniques, we can explore whether they agree as to which 
features are important in each area of the domain. This allows us test if the “disagreement problem” exists in this 
work, where two techniques explain network skill in different ways (Krishna et al., 2022), which is a growing area 
of interest in XAI research.

To summarize the main contributions of our work are that we present the first application of BNNs to quantify 
uncertainty in large-scale ocean circulation predictions, and explain the skill of these predictions through novel 
implementations of the XAI techniques, SHAP and LRP, thereby improving trustworthiness. The remainder of 
this paper is structured as follows: Section 2 explores the theory behind BNNs and applying XAI techniques to 
BNNs, Section 3 explores the data set used to train the BNN, Section 4 shows the results of applying the BNN 
and novel XAI techniques to the data set and finally Section 5 concludes this work.

2. Methods
The main methods used in this work are a BNN which we combine with two XAI techniques to explain the BNN's 
predictions. The general workflow is summarized in pictorial form in Figure 1. In this section, we detail each of 
the components in this figure, discussing BNNs in Section 2.1 and the two XAI techniques in Section 2.2.

2.1. Bayesian Neural Networks

Unlike classical deterministic neural networks, BNNs are capable of making well-calibrated uncertainty predic-
tions, which provide a measure of the uncertainty of the outcome (Jospin et al., 2020). This is possible due to 
the fact that the weights and biases on at least some of the layers in the network are distributions rather than 
single point estimates (see Figure 2). More specifically, as BNNs use a Bayesian framework, once trained, the 
distributions of the weights and biases represent the posterior distributions based on the training data (Bykov 
et al., 2020). Note that for brevity in this section hereafter, we refer to the weights and biases as network param-
eters. The distributions in the output layer facilitate the assessment of aleatoric uncertainty (uncertainty in the 
data) and the distributions in the hidden layers facilitate the assessment of epistemic uncertainty (uncertainty in 
the model) (Salama, 2021). In this work, we choose to assess both types of uncertainty and use distributions for 
the output layer, as well as for the network parameters of the hidden layers. Our BNN approach therefore provides 
a more holistic view than previous work to assess uncertainty in large-scale ocean neural network predictions in 
Gordon and Barnes (2022) where a deterministic neural network is used to predict the mean and variance of the 
output distribution.

Following Jospin et al. (2020), the posterior distributions in the BNN (i.e., the distributions of the network param-
eters given the training data) are calculated using Bayes rule
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where W are the network parameters, 𝐴𝐴 𝐴𝐴𝑡𝑡𝑡𝑡 = (𝑥𝑥𝑛𝑛, 𝑦𝑦𝑛𝑛) the training data and p(W) the prior distribution of the param-
eters. The probability of output y given input x is then given by the marginal probability distribution

�(�|�,���) = ∫�
�(�|� (�;� ))�(� |���) �� , (2)

where f(⋅; W) is the neural network. However, computing 𝐴𝐴 𝐴𝐴 (𝑊𝑊 |𝐷𝐷𝑡𝑡𝑡𝑡) directly is very difficult, especially due to 
the denominator in Equation 1 which is intractable (Bykov et al., 2020; Jospin et al., 2020). A number of meth-
ods have been proposed to approximate the denominator term including Markov Chain Monte Carlo sampling 
(Titterington, 2004) and variational inference (Osawa et al., 2019). We use the latter which approximates the 
posterior using a variational distribution, qΦ(W), with a known formula dependent on the parameters, Φ, that 

Figure 1. Detailed sketch of workflow used in this work to obtain and explain neural network predictions from ocean input data. This sketch includes both the Bayesian 
Neural Network and the two explainable AI techniques used. Note this figure adapts images used in Figure 5 of Sonnewald and Lguensat (2021).

Figure 2. Comparing a standard neural network to a Bayesian Neural Network.
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define the distribution (e.g., for a normal distribution, Φ are its mean and variance). The BNN then learns the 
parameters Φ which lead to the closest match between the variational distribution and the posterior distribution 
that is, the parameters Φ which minimize the following Kullback–Leibler divergence (KL-divergence)

���(�Φ||�) = ∫�
�Φ

(

� ′) log
(

�Φ(� ′)
�(� ′

|���)

)

�� ′. (3)

This formula still requires the posterior to be computed and so following standard practice, we use the ELBO 
formula instead

∫�
�Φ

(

� ′) log
(

�(� ′, ���)
�Φ(� ′)

)

�� ′, (4)

which is equal to log(p(Dtr)) − DKL(qΦ||p). Thus maximizing (Equation 4) is equivalent to minimizing (Equa-
tion 3) since log(p(Dtr)) only depends on the prior (Jospin et al., 2020). In our work, we follow standard practice 
and assume that all variational forms of the posterior are normal distributions and thus the Φ parameters the 
neural network learns are the mean and variance of these distributions. Furthermore, for all priors in the BNN, 
we use the normal distribution 𝐴𝐴  (0, 1) , which is again standard practice because of the normal distribution's 
mathematical properties and simple log-form (Silvestro & Andermann, 2020). We note briefly here that whilst 
probabilistic predictions could be achieved by instead using an ensemble of deterministic neural networks, this 
would not only take much longer to train but also lead to overconfident results (Joo et al., 2020). By contrast, the 
Bayesian approach in the BNN results in a more accurate representation of confidence.

In our work, we also calculate the entropy of the final distribution as a measure of uncertainty. In information 
theory, entropy is considered as the expected information of a random variable and for each sample i is given by

𝐻𝐻𝑖𝑖 = −

𝑁𝑁𝑙𝑙∑

𝑗𝑗=1

𝑝𝑝𝑖𝑖𝑗𝑗 log (𝑝𝑝𝑖𝑖𝑗𝑗) , (5)

where Nl is the number of possible variable outcomes and pij is the probability of each outcome j for sample i 
(Goodfellow et al., 2016). Hence, the larger the entropy value, the less skewed the distribution and the more 
uncertain the model is of the result.

Finally, for the layer architecture of the BNN, we use the same architecture as in Sonnewald and Lguensat (2021), 
who use a deterministic neural network to predict ocean regimes from the same data set as ours (see Section 3). 
Thus, our BNN has four layers with [24, 24, 16, 16] nodes and “tanh” activation, where the layers are “DenseVar-
iational” layers from the TensorFlow probability library (Dillon et al., 2017), rather than the “Dense” layers used 
in Sonnewald and Lguensat (2021). For the output layer of the network, we use the “OneHotCategorical” layer 
from the TensorFlow probability library instead of a “SoftMax” layer and thus use the negative log-likelihood 
function as the loss function. The network is compiled with an Adam Optimizer (Kingma & Ba, 2014) with an 
initial learning rate of 0.01, which is reduced by a factor of four if the loss metric on the validation data set does 
not decrease after 15 epochs (i.e., after the entire training data set has passed through the neural network 15 
times). The network is trained for 100 epochs and the best model network parameters over all epochs are recorded 
and saved as the trained parameters.

2.2. Explainable AI

Whilst using a BNN enables scientists to determine how certain the network is of its results, being able to explain 
the source of the predictive skill is also of key importance particularly because of the potential for spurious 
correlations in neural networks giving rise to nonphysical predictions. As discussed in Section 1, XAI techniques 
have recently been developed to explain the skill of neural networks (i.e., explain the correlations between the 
input features that give rise to the predictions). These techniques can then be used to reveal the extent to which 
neural networks are fit for purpose for a given problem (Arrieta et al., 2020; Samek et al., 2019). However, there 
has been little research into combining XAI techniques with uncertainty analysis. In this section, we outline how 
to adapt the two common XAI techniques, LRP and SHAP, so that they can be applied to BNNs. We remind the 
reader that we selected two XAI techniques originating from two different classes to gain a holistic view of  the 
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skill of the BNN. This is important to ensure that what the BNN has learned is genuinely rooted in physical 
theory, and we compare the outcomes of these methods with intuition from that theory.

2.2.1. Layer-Wise Relevance Propagation

LRP explains network skill by calculating the contribution (or relevance) of each input datapoint to the output 
score (Binder et al., 2016). This leads to the construction of a “heatmap” where a positive/negative “relevance” 
means a feature contributes positively/negatively to the output (Bach et al., 2015). For a neural network, this 
relevance is calculated by back-propagating the relevance layer-by-layer from the output layer to the input layer.

LRP has been successfully used to explain neural network skill in fields as diverse as medicine (Böhle et al., 2019), 
information security (Seibold et al., 2020) and text analysis (Arras et al., 2017), and has also already been applied 
to deterministic neural networks in climate science (Mamalakis et al., 2022; Sonnewald & Lguensat, 2021; Toms 
et al., 2020). However, there has been little research into applying LRP to BNNs, because the formulae used to 
calculate the relevance are difficult to apply when the network parameters are distributions.

BNNs do however have the advantage that it is easy to generate a deterministic ensemble of networks from them, 
simply by sampling network parameters from the distributions. We therefore follow the novel methodology in 
Bykov et al. (2020) and use LRP on this ensemble of networks, efficiently generating an ensemble of LRP values 
which serve as a proxy for explaining the skill of the BNN. Each datapoint has its own distribution of LRP values 
and own level of uncertainty. If a datapoint has positive or negative relevance for every ensemble member, we 
can be increasingly confident about this point's relevance for explaining the skill of the BNN. For the remaining 
points, still following (Bykov et al., 2020), quantile heatmaps of the ensemble of LRP values can be used to visu-
alize how many ensemble members have positive relevance and how many have negative.

There are many different formulae for calculating the relevance score with LRP (see Montavon et al., 2019), but 
in this work, we follow Sonnewald and Lguensat (2021) and use the LRP-ϵ rule which is good for handling noise. 
The relevance at layer l of a neuron i is then the sum of 𝐴𝐴 𝐴𝐴

(𝑙𝑙𝑙𝑙𝑙+1)

𝑖𝑖←𝑗𝑗
 for all neurons j in layer l + 1 where

𝑅𝑅
(𝑙𝑙𝑙𝑙𝑙+1)

𝑖𝑖←𝑗𝑗
=

𝑧𝑧𝑖𝑖𝑗𝑗

𝑧𝑧𝑗𝑗 + 𝜖𝜖 sign (𝑧𝑧𝑗𝑗)
𝑅𝑅

(𝑙𝑙+1)

𝑗𝑗
. (6)

Here zij is the activation at neuron i multiplied by the weight from neuron i to j, zj = ∑izij and ϵ is an arbitrary small 
positive number which is here chosen to be 10 −7 (see Montavon et al. (2019) for more details).

2.2.2. SHapley Additive exPlanation Values

For our second XAI technique, we consider SHAP values, known more commonly as SHAP values. These were 
first proposed in the context of game theory in Shapley (1953), but have since been extended to explaining skill 
in neural networks (Lundberg & Lee, 2017) and have been applied in climate science to deterministic neural 
networks in Dikshit and Pradhan (2021); Mamalakis et al. (2022). There has been work adding uncertainty to the 
SHAP values of deterministic neural networks by adding noise (Slack et al., 2021), but this work represents one 
of the first times SHAP values are used to explain the skill of a BNN.

SHAP values are designed to compute the contribution of each input datapoint to the neural network output using 
a type of occlusion analysis. They test the effect of removing/adding a feature to the final output that is, calculat-
ing fF(x) − fF\i(x), where f is the model, F is the set of all features and i the feature being considered (Lundberg 
& Lee, 2017). To calculate the SHAP value, we must combine this for all features in the model with a weighted 
average meaning the SHAP value of feature i for output y = fF(x) is

𝜙𝜙𝑖𝑖(𝑥𝑥) =
∑

𝑆𝑆𝑆𝑆𝑆∖𝑖𝑖

|𝑆𝑆|!(|𝑆𝑆 | − |𝑆𝑆| − 1)!

|𝑆𝑆 |!

[
𝑓𝑓𝑆𝑆∪{𝑖𝑖}(𝑥𝑥) − 𝑓𝑓𝑆𝑆 (𝑥𝑥)

]
, (7)

where S are all the sub-sets of F excluding feature i. Note that summing the SHAP value for every feature i gives 
the difference between the model prediction and the null model that is,

𝑓𝑓𝐹𝐹 (𝑥𝑥) = 𝔼𝔼[𝑦𝑦] +
∑

𝑖𝑖

𝜙𝜙𝑖𝑖(𝑥𝑥), (8)
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where 𝐴𝐴 𝔼𝔼[𝑦𝑦] is the average of all outputs y in the training data set (Mazzanti, 2020). We remark here that evaluating 
(7) for every feature can be computationally expensive; the complexity of the problem scales by 2 |F|. Therefore 
various techniques have been proposed to speed up the evaluation of SHAP values, the most popular of which 
is KernelSHAP (Lundberg & Lee, 2017). In this work, however, we choose to calculate the exact SHAP values 
because we only have eight features (see Section 3) and these more efficient techniques assume feature independ-
ence (which our data set does not have), and can lead to compromises on accuracy if not handled appropriately 
(Aas et al., 2021).

Like with LRP, we apply SHAP to an ensemble of deterministic neural networks generated from the BNN. We 
note here that SHAP is model agnostic so in the future, with changes to implementation, it may be possible to 
apply SHAP directly to the BNN itself. We expect the SHAP results to differ from the LRP results because the 
LRP ensemble captures the model uncertainty as LRP values are a weighted sum of the network weights, whereas 
SHAP captures the sensitivities of the outputs as a result of these uncertainties.

3. Data
A recent IPCC Special report highlights the need for a better understanding of uncertainty in ocean circulation 
patterns (Hoegh-Guldberg et al., 2018). An understanding of emergent circulation patterns can be gained using 
a dynamical regime framework (Sonnewald et  al.,  2019). These regimes simplify dynamics and each regime 
is then defined to be the solution space where the simplification is justifiable (Kaiser et al., 2021). Sonnewald 
et al. (2019) show that unsupervised clustering techniques such as k-means clustering can be used to identify and 
partition dynamical regimes if the equations governing the dynamics are known. Specifically they use k-means 
clustering of model data from the numerical ocean model ECCOv4 (Estimating the Circulation and Climate 
of the Ocean) to identify dynamical regimes and develop geoscientific utility criteria. In our work, we follow 
Sonnewald and Lguensat (2021) and use this regime deconstruction framework as the labeled target data that the 
BNN seeks to predict at each point on the grid. Because the dynamical regimes were found in the model equa-
tion space, we have an automatic way to verify the XAI results. Figure 3 shows a global representation of these 
six dynamical ocean regimes, which we have labeled A, B, C, D, E, and F corresponding to the regimes “NL,” 
“SO,” “TR,” “N-SV,” “S-SV,” and “MD” in Sonnewald and Lguensat (2021). We have made this label simpli-
fication because the aim of this work is to develop a neural network technique to improve the trustworthiness 
of neural network analyses of ocean model outputs. Thus anything other than a high-level understanding of the 
physics is beyond the scope of this work and we refer the reader to Sonnewald et al. (2019) and Sonnewald and 
Lguensat (2021) for a more in-depth discussion.

Figure 3. Global representation of dynamical ocean regimes in Estimating the Circulation and Climate of the Ocean data. 
For a full description of the ocean regimes see Sonnewald and Lguensat (2021).
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For our input features, we follow Sonnewald and Lguensat (2021) and use data from the numerical ocean model 
ECCOv4, but the framework is set up so that it can be readily trained on CMIP6 data in the future (Forget 
et al., 2015). The following features are then used for prediction: wind stress curl, Coriolis (deflection effect 
caused by the Earth's rotation), bathymetry (measurement of ocean depth), dynamic sea level, and the latitudinal 
and longitudinal gradients of the bathymetry and the dynamic sea level. These features are chosen following the 
dynamical regime decomposition in Sonnewald et al. (2019) and Table 1 shows which features are important for 
each regime according to the clustering of the equation space based on theoretical intuition. The specific compo-
sition of these features into terms in the equation space then manifests as different key ocean circulation patterns. 
Note that, following standard practice, all input features are normalized before being used in the BNN.

For the training and test data set split, we split by ocean basin. The Atlantic Ocean basin (80°W to 20°E) is the 
test data set. The rest of the data set is split into a training data set (80%) and a validation data set (20%) with the 
validation data set being used to compute loss metrics during BNN training thus helping to prevent overfitting 
(see Section 2.1). In summary, the training data set has approximately 85,000 gridpoints, the validation data set 
approximately 20,000 gridpoints and the test data set approximately 40,000 gridpoints. During BNN training, we 
shuffle the data set after each epoch to ensure that the neural network does not memorize the order of the data 
input, and thus that we are truly using a gridpoint-by-gridpoint approach where the BNN does simply learn spatial 
correlations. In this way, we also decrease the correlation between the training and validation data sets.

3.1. Remark on k-Means Clustering and Data Selection

We conclude this section with a brief remark on the k-means clustering approach used to identify the regimes that 
are the target data for the BNN. The clustering was conducted on equation terms within the barotropic vorticity 
budget (Sonnewald et al., 2019). However, determining these balances from CMIP6 model data is very diffi-
cult, and understanding these difficulties is the subject of ongoing work (see e.g., Waldman & Giordani, 2022). 
Therefore it is to-date impractical to train our BNN using the closed baratropic vorticity equation terms as input 
features. Therefore, as discussed, we instead use surface fields and depth. Thus, here, as in Sonnewald and 
Lguensat (2021), we are conducting sub-surface dynamics inference; a highly underdetermined problem whose 
non-linearity means that progress with standard approaches such as linearization has been limited. Our work aims 
not only to show that a BNN can help solve this underdetermined problem, but also to understand why it makes 
these predictions and how uncertain these predictions are. This will help take the first steps toward understand-
ing the uncertainties and the correlation between the surface input features and the in-depth dynamical ocean 
regimes. The general framework could also have implications in other fields for the solving of highly underde-
termined problems.

We are confident that the k-means clustering in Sonnewald et al.  (2019) identifies the correct ocean regimes 
as they have been independently verified in Appendix C in Sonnewald and Lguensat (2021) using unseen data 
from a different model. They also agree with physical intuition and knowledge of ocean dynamics. However, 
even if there are biases in the regimes, this will have little to no impact on the classification accuracy of our 
BNN relative to the given outputs because a neural network simply emulates what it is given. In further work, 
we could consider using a Gaussian Mixture Model (GMM) (Valletta et al., 2017) instead of k-means clustering. 

Table 1 
Approximate Importance of Features for Predicting Each Regime According to the Equation Space, Using Analysis From 
Figure 1 in Sonnewald et al. (2019)
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For a given datapoint, GMMs predict the probability distribution across all 
the identified clusters. Thus their main advantage over k-means clustering 
is that they reveal information on the uncertainty of the clusters themselves. 
However to the best of our knowledge using a BNN with GMMs would 
require the construction of new functionality and/or layers in the Tensorflow 
probability library, because BNNs are designed to be trained on determin-
istic outputs. Furthermore, given how robust our k-means clusters are (see 
Sonnewald et al., 2019), GMMs will likely give similar results and add poten-
tially needless complexity.

4. Results
In this section, we first use a BNN to make a probabilistic forecast of ocean 
circulation regimes and show the value added by the uncertainty analysis 
that can be conducted through using a BNN instead of a deterministic neural 
network. We then use two modified XAI techniques to explain the skill of this 
network, comparing the two techniques with each other and with physical 
understanding.

4.1. Bayesian Neural Networks

The advantage of BNNs over deterministic neural networks is that they provide an good uncertainty estimate 
efficiently. However, for BNNs to be of value they must also make accurate predictions. Figure 4 compares the 
accuracy metrics of the BNN applied to the training data set (the global ocean, excluding the Atlantic Ocean 
basin) and the validation data set during training. The accuracy metric clearly converges and the level of accu-
racy is high, indicating that the architecture and learning rates chosen are appropriate for this data set. When the 
trained BNN is applied to the test data set (the Atlantic Ocean basin), the accuracy is 74%, which is approximately 
the same as  the accuracy achieved by the deterministic neural network in Sonnewald and Lguensat (2021) on 
the same data. Thus, by using a BNN we have not lost accuracy. For multi-classification tasks, accuracy can be 
insufficient for fully reflecting the model performance. Therefore in Figure 5 we show the confusion matrix for 
our BNN. This shows that most incorrect predictions occur for regime A for which errors are not unexpected—it 
is a composite regime with a less Gaussian structure meaning it is less clearly defined and less easily determined 
by k-means (Sonnewald et al., 2019). The confusion matrix also shows that the BNN sometimes struggles to 
differentiate between Regimes C and E. This can be seen again in Figure 6b (the spatial distribution of the correct 
and incorrect regime predictions), which shows inaccuracies around 30°S and 0°W where Regime C transitions 

to Regime E. These inaccuracies will be discussed later in this section when 
we analyze the added uncertainty information provided by the BNN.

As we are considering aleatoric uncertainty (uncertainty in the input data), 
the BNN output is not deterministic but is instead a distribution. Moreover, 
as we are also considering epistemic uncertainty (uncertainty in the model 
parameters), the network parameters are distributions, the full output is an 
ensemble of distributions. In Figure 7, we show both types of uncertainty 
using a box-and-whisker plot for the predictions for three example data-
points. The narrower the box and whisker, the lower the epistemic uncer-
tainty in the prediction for this regime. For example, in Figure 7a there is 
almost no width to the box and whisker indicating low epistemic uncertainty, 
whereas for Figure 7b there are a range of possible probabilities of the most 
likely regime occurring, indicating epistemic uncertainty. In both Figures 7a 
and 7b the highest probability is high (almost 1 for Figure 7a and just under 
0.8 on average for Figure 7b), which indicates that the aleatoric uncertainty 
is low. Therefore, practitioners can be confident in the results for both these 
datapoints, with Figure 7a being a more trustworthy neural network regime 
prediction than Figure  7b. By contrast, Figure  7c has high levels of epis-
temic uncertainty and fairly high levels of aleatoric uncertainty meaning that 

Figure 4. Training accuracy and loss metrics for the BNN showing that the 
training has converged. See Section 3 for exact descriptions of the training and 
validation data sets.

Figure 5. Confusion matrix for Bayesian Neural Network ocean regime 
predictions.
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although the practitioner can trust that the regime is either A or F, the overall neural network regime prediction 
for this datapoint is not very trustworthy.

Using these distributions, we can calculate the difference between the probability the BNN assigns to the 
predicted regime and the probability it assigns to the correct regime. If the BNN has predicted the correct regime 
then this difference is zero, and, if the BNN is very certain in its prediction of the incorrect regime, the maximum 
possible probability difference is one. The spatial distribution of this value is shown in Figure 6c and unsurpris-
ingly corresponds closely with the spatial distribution of the correct and incorrect BNN predictions in Figure 6b. 
The probability difference map adds value compared to the accuracy map because we can see where errors are 
more substantial. For example, although the BNN appears to perform poorly in the accuracy statistics around 
Greenland (especially around 50°W and 50°N and 20°W and 70°N), the difference between the probability of 
the correct regime and the highest probability is low. Therefore the BNN is still assigning a high probability to 
the correct regime here which is useful for practitioners. In contrast, off the north coast of South America, the 

Figure 6. Spatial distribution of key metrics calculated from the Bayesian Neural Network predictions for the test data set (Atlantic Ocean basin), as well as the correct 
regimes for this data set. The diamonds are the three locations of the example datapoints in Figure 7.
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probability difference is almost 1 meaning the BNN is doing a poor job here and should not be used in its current 
state for predictions here. Comparing Figure 6c with Figure 6a reveals that almost all the high probability differ-
ences occur at the boundaries between regime A and other regimes (e.g., in the Southern Ocean at the boundary 
between regimes B and D with regime A). This reveals that a key weakness of our BNN is predicting whether 
the input features indicate Regime A or a different regime in borderline cases. Thus by analyzing this probability 
difference, we have gained valuable information for future predictions and learned that to improve the BNN accu-
racy, we should provide more training data on the boundaries between regime A and other regimes. This could be 
achieved by, for example, running more model simulations with different perturbations to the initial conditions.

The distributions outputted by the BNN can also be used to numerically quantify the uncertainty in the network 
predictions. We can calculate the entropy value using Equation 5, where we recall that the higher the value the 
more uncertain the result. Figure 6d shows the spatial distribution of this entropy and comparing with Figure 6b 

Figure 7. Box-and-whisker plot of Bayesian Neural Network predictions of ocean regimes, generated using an ensemble of outputs. Here, as standard, the boxes 
indicate the interquartile range. The correct regime is colored green and the incorrect regimes are colored purple.
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shows that the higher entropy values tend to be where the BNN prediction is incorrect. For example, there is high 
levels of entropy around 30°S and 0°W where Regime C transitions to Regime E, which, as previously discussed, 
is an area of high inaccuracy (see Figures 5 and 6b). More precisely, Figure 8 compares the distribution of the 
entropy when the BNN predictions are correct and when they are incorrect, and clearly shows that the entropy 
for the correct predictions is skewed toward lower values, whereas the entropy for the incorrect predictions is 
skewed higher. This is a good result because it means that the predictions are notably more uncertain when they 
are incorrect than when they are correct, that is, the correct regime classifications are also those that the BNN 
informs the practitioner are the most trustworthy.

Finally, Figure  7 show that there can be substantial overlap between the box-and-whisker for each regime. 
However this can be misleading as box-and-whisker plots consider upper and lower quartiles which are not 
useful for assessing statistical significance. Therefore, we also consider the confidence intervals and in Figure 6e 
show the spatial distribution of the confidence level size for the probabilities of the predicted regime. Note that, 
the spatial distribution for the confidence intervals is very similar to that for the entropy. Broadly speaking, the 
higher the value of the confidence intervals the higher the epistemic uncertainty, and the higher the entropy 
values the higher the aleatoric uncertainty. Therefore this similarity in spatial distributions suggests that for our 
framework, aleatoric and epistemic uncertainty are highly linked. Using confidence intervals, we find that for 
the majority of cases, the probabilities for the most likely regime are statistically significantly different from the 
probabilities for the other regimes. Figure 9a highlights the datapoints for which this is not the case, and that 
these datapoints correspond to points for which there is high entropy (see Figure 6d). For the vast majority of 
the datapoints in Figure 9a, the top two most likely regimes are statistically significantly different from the other 
regimes and the correct regime is one of the two regimes. Therefore although the neural network is uncertain for 
these datapoints, it is still predicting a high probability for the correct regime. Finally, there are approximately 
20 datapoints where only the top three most likely regimes are significantly different from the others. An exam-
ple of one such datapoint is shown in Figure 9b, where half the regimes have the same probability. Although 
this is not ideal, this is an example of where a BNN is better than a deterministic neural network, because it 
clearly informs the user that it is very uncertain of its prediction and that using this BNN on this datapoint is 
inappropriate.

Therefore, in this section we have shown that by looking at the probabilities and confidence intervals produced by 
the BNN, practitioners can make an informed decision as to whether to trust the BNN prediction for the dynam-
ical regime or whether further analysis is required for these datapoints.

4.2. Explainable AI

To explain the BNN's skill, we sapply two common XAI techniques, LRP and SHAP, to an ensemble of deter-
ministic neural networks generated from the BNN. We consider LRP in Section 4.2.1 and SHAP in Section 4.2.2, 
and then compare results from the two techniques in Section 4.2.3 to test the “disagreement problem” discussed 
in Section 2.2. If LRP and SHAP largely agree with each other as to which features are relevant in each area (i.e., 

Figure 8. Distribution of entropy values for the correct and incorrect regime predictions. Recall that the lower the entropy, 
the more certain the result.
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there is no disagreement problem) and also agree with our intuition from physical theory then this increases the 
trust in our XAI results. This is important to ensure that what the BNN has learned is genuinely rooted in physics. 
Moreover, the use of a BNN allows us to explore whether disagreement between SHAP and LRP is more likely 
to occur when predictions have higher entropy (i.e., higher uncertainty).

4.2.1. Layer-Wise Relevance Propagation

Applying LRP using our ensemble approach means that each input variable has its own distribution of LRP 
values and own level of uncertainty. Figure 10 shows the values for which the sign of the LRP value (i.e., the 
relevance) remains the same between the 25%–75% quantiles of the ensemble. Note that throughout the LRP 
values are scaled by the maximum absolute LRP value for any variable across the ensemble. If the LRP value 
consistently has the same sign across the quantiles, then we can be confident of the effect this feature has on the 
output; the piece of information of most interest to practitioners in a recent survey in Lakkaraju et al. (2022). We 
recall from Section 2.2.1 that a positive/negative LRP value means a feature contributes positively/negatively 
to the output.

In Figure 10, red indicates that the variable in this area is helpful for the BNN in making its predictions, blue 
that it is unhelpful, and white that it is too uncertain to have consistent relevance. Note that certain areas of 
white may also be because the variable does not contribute (see Figure A1 in Appendix A which shows the 
actual LRP values for the 25%, 50%, and 75% quantiles of the ensemble). An important point to note when 
interpreting these trends is that our network predicts using a gridpoint-by-gridpoint approach and does not 
see the overall global map, thus making the spatial coherence striking in its consistency. To aid with the 
interpretation of the LRP values for each regime, we include Figure 11 (which shows the most probable 
ocean regime predicted by the BNN) to help qualitatively see the trends, and Table 2 which highlights the 
general trends in the relevance and variance of the LRP values for each regime with respect to each feature. 
By comparing Table 1 with Table 2, we can compare the general trends of the LRP values with what is 
expected from the clustering of the equation space. A strong difference is that according to LRP the gradients 
of the bathymetry are irrelevant to the BNN predictions with high certainty (apart from for key processes 
discussed in Table 3), whereas the equation space suggests the bathymetry gradients are relevant for some 
regimes.

Of particular interest when comparing Tables 1 with Table 2 are the differences for Regimes A and B. From the 
equation space (see Table 1), we would expect all features to be helpful for these regimes. However, in the case 
of Regime A, the LRP values conclude that both the wind stress curl and the longitudinal gradient of the dynamic 

Figure 9. Considering whether the differences between the probabilities for each regime are statistically significantly different. The star on (a) is the location of the 
example datapoint in (b). In both figures, incorrect predictions are colored purple and correct predictions green.
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sea level are unhelpful. Figure 6 shows that both the highest areas of inaccuracy and the highest areas of entropy 
(i.e., uncertainty) in the BNN occur for datapoints which should be Regime A. These LRP values suggest that the 
reason for the errors and uncertainty in the predictions for these datapoints is that the BNN is incorrectly weight-
ing the wind stress curl and the longitudinal gradient of the dynamic sea level there. By contrast, for Regime B, 
there are no features which are unhelpful. Instead, there are some features for which the BNN has no relevance 
(gradients of both the bathymetry and the dynamic sea level). The BNN predictions for Regime B are generally 
accurate and certain, and therefore this implies that, despite the conclusions from the equation space, the BNN 
can rely on certain key features it has identified to make accurate certain predictions. There is therefore scope for 
learning about the physical ocean processes guided by understanding of what the BNN determines as important 
and unimportant.

For reasons of brevity, we do not detail all the physical interpretations in Figure 10 and Table 2 but instead 
focus on the key dynamical processes of the North Atlantic Drift, the Gulf Stream leaving the continental 
shelf, and the North Atlantic wind gyre; and the key physical characteristic of the mid-Atlantic ridge specifi-
cally as it crosses the wind gyre (hereafter simply referred to as the mid-Atlantic ridge). The location of these 
processes is shown in Figure 12 and the variance and relevance of the LRP values for them are summarized in 
Table 3. The table highlights that for the North Atlantic Drift, there are no features which have strong positive 
relevance; in fact, the Coriolis force and latitudinal gradient of the sea level have strong negative relevance. 
Instead, it is regimes other than the regime of the North Atlantic Drift (Regime F), which have highly relevant 

Figure 10. Layer-wise Relevance Propagation values which are consistent across the whole ensemble. Red indicates that the variable in this area is helpful for regime 
prediction, blue that it is unhelpful, and white that it is too uncertain to have consistent relevance.
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features in the area; for example, both the dynamic sea level and its longi-
tudinal gradient are strongly positively relevant for Regime A in this area. 
This is also noted in Sonnewald and Lguensat  (2021), who suggest this 
could be because of multiple inputs contributing medium importance to 
predictions for Regime F (see Table 1). In contrast, where the Gulf Stream 
leaves the continental shelf, the Coriolis effect and wind stress curl are both 
strongly helpful. This conclusion greatly agrees with physical intuition, 
which states that these features are the key drivers for the Gulf Stream's 
movement across the North Atlantic (Webb,  2021). Table  3 also shows 
that the bathymetry gradient is unhelpful for this process. Before leaving 
the coast, physical intuition suggests that the gradient of the bathymetry is 
the key driver of the Gulf Stream and this can be seen in the LRP values, 
(particularly for the latitudinal gradient in Figure  A1h). It is therefore 
likely that the BNN is using the same weightings for the bathymetry gradi-
ent as the Gulf Stream leaves the continental shelf, but the key drivers 
have changed meaning the bathymetry gradient is no longer helpful. Also 
of interest is the longitudinal gradient of the sea level, which is unhelpful 
for the North Atlantic Drift, very uncertain for the Gulf Stream leaving 
the continental shelf (an area which has high entropy in Figure  6d) and 
then helpful for the wind gyre. This suggests the this feature is acting as 
an indicator between the three regimes discussed here. For the wind gyre, 
the wind stress curl is also strongly helpful, which agrees with the intuition 
from physical theory of gyres, which states that they are largely driven by 
the wind stress curl (see Munk, 1950). Note however that the theory also 
indicates that Coriolis should be somewhat helpful but it is unhelpful. This 
variation may be because the BNN does not seem to be able to accurately 

weight low values of Coriolis (near the equator). Nevertheless the general agreement with physical intuition 
for the dynamical processes discussed here highlights our BNN's ability to learn key physical processes.

Unlike the other processes highlighted, the mid-Atlantic ridge is a physical characteristic of the bathymetry that 
will remain unchanged by a future climate. The ridge is clearly identifiable in the features in Figure 10 and it 
is therefore interesting to highlight the differences between the relevance of this ridge and the relevance of the 
other gridpoints in the wind gyre around it. The most noticeable difference is that the ridge adds uncertainty to 
the BNN predictions—for almost all features, the relevance of the mid-Atlantic ridge is more uncertain than that 
of the wind gyre. The exception is the bathymetry, which becomes strongly unhelpful with high certainty at the 
mid-Atlantic ridge. Added to the fact that the bathymetry gradients are also more unhelpful at the ridge than at 

Figure 11. Most probable ocean regime predicted by Bayesian Neural 
Network.

Note. Here + indicates that the feature is helpful for regime prediction and—that it is unhelpful (so high + indicates high positive relevance). (– >+) indicates that 
between the 25th and 75th quantiles, the variable changes from unhelpful to helpful.

Table 2 
General Trends in the Variance and Relevance of Layer-Wise Relevance Propagation Values for Each Regime and Each Feature
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the surrounding gridpoints, this suggests that the BNN is able to identify the ridge in the bathymetry but unable to 
weight it correctly, which leads to uncertainty in the relevance of the other features. We observe that, in contrast 
to bathymetry, both gradients of the dynamic sea level increase in helpfulness at the ridge, in particular the longi-
tudinal gradient. Moreover, Figure 6 shows the BNN predicts the correct regime for the mid-Atlantic ridge with 
high certainty. Therefore, this suggests that reliable and accurate predictions for regimes at the mid-Atlantic ridge 
should be based more on the gradient of the dynamic sea level than the bathymetry itself.

To summarize, our discussion of LRP values in this section has highlighted both our BNN's ability to identify 
known physical characteristics and the potential scope to advance physical theory through analyzing its skill. 
We have also shown that LRP values are highly uncertain. In Appendix B, we show that this uncertainty in LRP 
values is also present in prediction of day-ahead 2m temperature biases. This reinforces the point that considering 
uncertainty greatly improves our ability to correctly interpret LRP values for geoscience problems.

4.2.2. SHapley Additive exPlanation Values

Whereas LRP considers the relevance of a feature for all regimes simultaneously, the SHAP approach sees the 
problem as binary for each regime: including a feature at a gridpoint either increases the probability of the 
specific regime being considered there or decreases it. There is therefore a SHAP value for each gridpoint for 
each regime, meaning we have six times the number of SHAP values as we do LRP. Moreover our ensemble 

approach means each input variable and regime pairing has its own distribu-
tion of SHAP values and own level of uncertainty. Table 4 summarizes the 
general trends in the SHAP values and in particular highlights that for all 
regimes and features the variance in the ensemble is low, and most features 
considered are helpful for predictions. The main exceptions to the latter are 
the latitudinal gradient of the dynamic sea level and both bathymetry gradi-
ents, which are not important for regime predictions (apart from in certain 
key areas discussed later).

Figure 13 shows the gridpoints for which the sign of the SHAP value remains 
the same between the 25% and 75% quantiles of the ensemble. Note that 
even though our BNN uses a gridpoint-by-gridpoint approach, for ease of 
interpretation, we display the SHAP results using a spatial representation, as 
if SHAP had been applied to a full image. For simplicity, we focus here on 
Figure 13a which shows the SHAP values for Regime A, although note that 
the following statements hold true for the regimes for the other figures too. 
In Figure 13a, red indicates that the probability of Regime A is increased 
here by including this feature, blue that the probability is decreased and 
white mainly that this feature has no effect on the probability of predicting 

Note. Here + indicates that the feature is helpful for regime prediction and—that it is unhelpful (so high + indicates high positive relevance). (– >+) indicates that 
between the 25th and 75th quantiles, the variable changes from unhelpful to helpful.

Table 3 
Variance and Relevance of Layer-Wise Relevance Propagation Values for the Key Dynamical Processes of the North Atlantic Drift (NAD); the Gulf Stream Leaving 
the Continental Shelf (GS), the Wind Gyre and the Key Physical Feature of the Mid-Atlantic Ridge as It Crosses the Wind Gyre (MAR) (See Figure 12)

Figure 12. Locations of key dynamical processes and physical features of 
interest in Table 3: the North Atlantic Drift is the blue area at ∼40°N; the Gulf 
Stream leaving the continental shelf is the green area near coastline at ∼70°W 
and 40°N; the wind gyre is the pink area at ∼0° and 30°S; and the part of the 
Mid-Atlantic Ridge we are focusing on is the gray-scale contours crossing the 
wind gyre at ∼30°W.
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Note. To allow direct comparison with Layer-wise Relevance Propagation, for each regime, we only consider the SHAP values in the regime location rather than in the 
whole domain. Therefore + means the feature is helpful for the prediction here and—that it is unhelpful.

Table 4 
General Trends in the Variance and Relevance of SHapley Additive exPlanation (SHAP) Values for Each Regime and Each Feature, Where NH Refers to the Values in 
the Northern Hemisphere and SH to Those in the Southern Hemisphere

Figure 13. SHapley Additive exPlanation (SHAP) values which are consistent across the whole ensemble for Regimes A (a), B (b), C (c), D (d), E (e) and F (f). Red 
indicates that the probability of the Regime here is increased by including this feature and blue that the probability is decreased. White means that the SHAP value is 
either too uncertain or that the variable has no effect.
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Regime A here (although it can also mean there is uncertainty in the SHAP value). If the red matches with the 
area where the BNN predicts Regime A or the blue matches with the area where the BNN does not predict 
Regime A, this means that including this feature is helpful for predicting this regime in this location. An exam-
ple of this in Figure 13a is the SHAP values for the longitudinal gradient of the sea level. If, however, the red 
matches with a area where the BNN does not predict Regime A or the blue matches with the area where the 
BNN does predict Regime A, then including this feature is unhelpful for predicting this regime. An example of 
this in Figure 13a is the dynamic sea level where including it increases the probability of Regime A everywhere 
below 40°S and above the North Atlantic Drift, but Regime A is only predicted in certain parts of this area. 
Notably, Figure 6d shows that at the latitudes where the dynamic sea level is unhelpful, the BNN predictions 
have high entropy (i.e., high uncertainty) suggesting that the dynamic sea level may be a key contributing factor 
to the uncertainty here.

As in the LRP section, we also consider the key dynamical processes of the North Atlantic Drift, the Gulf 
Stream leaving the continental shelf and the North Atlantic wind gyre, as well as the physical characteristic of 
the mid-Atlantic ridge where it crosses the wind gyre (see Figure 12). The variance and relevance of the SHAP 
values for these processes are summarized in Table 5. For the North Atlantic Drift, the SHAP values show that 
the wind stress curl is strongly helpful, and that the Coriolis, dynamic sea level and the longitudinal gradient 
of the sea level are also helpful. The North Atlantic Drift is a geostrophic current and therefore this feature 
relevance agrees strongly with the physical theory which governs these types of currents (Webb, 2021). It is 
also in contrast to the conclusions from the LRP values where no feature is strongly helpful, only the dynamic 
sea level and the wind stress are at all helpful and the Coriolis is strongly unhelpful. This difference in the 
relevance of the Coriolis is also seen for the gyre, which SHAP values say is irrelevant and the LRP values say 

Figure 13. (Continued)
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is strongly unhelpful. Neither agree with intuition from physical theory, which suggests that Coriolis should 
have some relevance for the gyre. The SHAP values and LRP values do however both identify that for the 
gyre, the wind stress curl is strongly helpful and the longitudinal gradient of the sea level is helpful, which we 
recall from Section 4.2.1 agrees with physical intuition. The SHAP and LRP relevance patterns for where the 
Gulf Stream leaves the continental shelf are also similar to each other. Furthermore, the increased certainty in 
the SHAP values makes it clear that the longitudinal gradient of the sea level is strongly unhelpful for predic-
tions of this process, whereas for LRP the relevance is very uncertain. Like with LRP, there is also a clear 
distinction in the SHAP values between the North Atlantic Drift, the Gulf Stream leaving the continental shelf 
and the wind gyre, strengthening the hypothesis that this feature is an indicator between the three regimes. 
Finally, the mid-Atlantic ridge is not as prominent in the SHAP values as it is in the LRP values, but the SHAP 
values still have increased uncertainty there, which is particular significant when the general uncertainty in the 
ensemble of SHAP values is so low. Furthermore, like the LRP values, the SHAP values also show that both 
bathymetry and its gradients are more unhelpful at the mid-Atlantic ridge than for the surrounding gridpoints. 
This supports the conclusions made in Section 4.2.1 that the BNN is able to identify the ridge but not weight 
it properly.

To summarize, we have shown that SHAP values provide further evidence of the BNN's ability to identify known 
physical processes. We have also begun to demonstrate the benefit of using two different XAI techniques, and in 
the next section compare the findings from the two different techniques more systematically.

4.2.3. LRP Versus SHAP

As discussed in Section 2.2.2, LRP and SHAP use two very different approaches to explain skill and hence differ-
ent types of uncertainty are reflected in their values: LRP considers the neural network parameters and therefore 
captures the model uncertainty, whereas SHAP captures the sensitivities of the outputs as a result of the uncer-
tainties. Comparing Tables 2 and 4 clearly shows that this different approach results in SHAP values being more 
certain in their assessment of feature relevance than LRP values. This difference suggest that our BNN is fairly 
robust because the uncertainty in the network is greater than the uncertainty in the predictions. This is equivalent 
to the findings in Section 2.1 where our BNN predictions have low entropy (i.e., low uncertainty) despite the 
weights in the BNN being distributions (see Figure 6d).

Table 6 directly compares the trends in the relevances of LRP and SHAP. Some differences between SHAP and 
LRP are due to the fact that SHAP values separate out the relevance of each feature for each regime, whereas 
LRP values consider the relevance of a feature for all regimes simultaneously. For example, in the upper part of 
the Atlantic (∼60°N), the SHAP values for Regime A (Figure 13a) show that the wind stress curl is helpful for 
predicting that regime. However, the SHAP values for regimes C and E (Figures 13c and 13e respectively) show 
that the wind stress curl also increases the probability of regimes C and E at that location. Therefore when the 
SHAP values for all regimes are considered, the wind stress curl may actually be more unhelpful than helpful, 
agreeing with LRP.

Table 5 
Variance and Relevance of SHapley Additive exPlanation Values for the Key Dynamical Processes of the North Atlantic Drift (NAD); the Gulf Stream Leaving the 
Continental Shelf (GS), the Wind Gyre and the Key Physical Feature of the Mid-Atlantic Ridge as It Crosses the Wind Gyre (MAR) (See Figure 12)
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As in Sections 4.2.1 and 4.2.2, for brevity we do not discuss all differences between SHAP and LRP. Instead, we 
summarize the key comparisons for each regime in the following list:

Regime A

•  Wind stress curl is helpful in SHAP but unhelpful in LRP (see discussion in text previously).
•  The locations where the dynamic sea level has strong relevance in the LRP values coincides directly with the 

areas where regime A is predicted. The dynamic sea level is also helpful in SHAP, but SHAP shows that this 
feature also increases the probability of Regime A in areas where Regime A is not predicted. Note that the 
latter are areas of high entropy (see Figure 6d).

•  The longitudinal gradient of the dynamic sea level is strongly unhelpful in LRP and strongly helpful 
in SHAP.  Again the areas where SHAP and LRP differ correspond to areas of high entropy in the BNN 
predictions.

Regime B

•  Wind stress curl is strongly helpful in both LRP and SHAP, but along the east coast of Greenland, in the SHAP 
values, the wind stress curl increases the probability of regime B, but the BNN does not predict this regime nor 
would regime B be accurate there. This area has high entropy and in the LRP values the relevance of the wind 
stress curl switches here from unhelpful in the 25th quantile to helpful in the 75th quantile. This suggests that 
the BNN has high uncertainty in the relevance of this input feature here.

•  In the SHAP values, the bathymetry is helpful but in LRP it is unhelpful. This is despite the fact that areas 
where this regime is predicted by the BNN, generally have low entropy

•  Coriolis is strongly helpful in SHAP (as would be expected from physical intuition) but has low relevance in 
the LRP values, apart from around the tip of South America where it is strongly helpful.

Regime C

•  In regime C, particularly in the southern hemisphere, most features have no relevance in the LRP values but a 
medium or high relevance in the SHAP values. In particular, the dynamic sea level and its longitudinal gradi-
ent have no relevance with high certainty in the LRP values but strong positive relevance with high certainty 
in the SHAP values. Note that entropy is low for this regime, particularly in the southern hemisphere

•  Wind stress curl is strongly helpful in both LRP and SHAP.  This likely explains the irrelevance in other 
features in the LRP values: LRP values consider the weightings in the BNN, and the wind stress curl has such 
a strong weighting that all other features are comparatively close to zero. In contrast, SHAP values consider 
the sensitivity of the output to other features, which does change

Regime D

•  In both SHAP and LRP, the dynamic sea level is helpful in the northern hemisphere but unhelpful in the 
southern hemisphere.

•  Coriolis is strongly helpful at high latitudes in the SHAP values and irrelevant at mid-latitudes. In contrast, 
Coriolis is unhelpful in the LRP values especially at the mid-latitudes. This variation suggests the BNN does 

Note. If the relevance changes sign, the change is colored red.

Table 6 
Comparing the General Trend in the Relevances of Layer-Wise Relevance Propagation > SHapley Additive exPlanation.
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not accurately weight low values of Coriolis (near the equator), resulting in unhelpful LRP values. Nearer the 
poles, the weighting improves enough for SHAP to become helpful but not enough for LRP to become helpful.

•  The wind stress curl is strongly helpful in both the SHAP and LRP values but the SHAP values for wind 
stress curl do not have increased uncertainty at the mid-atlantic ridge. This reflects the general trend of greater 
certainty in SHAP values than LRP values.

Regime E

•  Wind stress curl is strongly helpful for SHAP and LRP, but the LRP values in the southern hemisphere have 
high variance especially around 35°S where the BNN entropy is highest.

•  Coriolis is strongly unhelpful in LRP especially at mid-latitudes but only slightly unhelpful in SHAP (see 
discussion for Regime D).

•  The latitudinal gradient of the dynamic sea level is irrelevant in the SHAP values but has relevance in the LRP 
values. There is however a split in the LRP relevance at 35°S—above this latitude the relevance is positive and 
below the relevance is negative. This split corresponds with an increase in entropy, where entropy is higher 
below this latitude.

Regime F

•  Wind stress curl is strongly helpful in SHAP but unhelpful in LRP. We would expect wind stress curl to be 
helpful from Table 1 so this is an example where SHAP agrees more closely with physical intuition than LRP.

•  Bathymetry is unhelpful for this regime in LRP but in SHAP only has relevance at the coastlines.
•  Coriolis is unhelpful in LRP at mid-latitudes but has no relevance in SHAP except at high latitudes (see 

discussion for Regime D).
•  The latitudinal gradient of the dynamic sea level is very uncertain in LRP changing from unhelpful to helpful, 

despite the fact that the entropy is low for predictions of this regime. This gradient has no relevance according 
to SHAP, and thus the mean of the SHAP and LRP values agree for this feature. This reflects the general trend 
of greater certainty in SHAP values than LRP values.

In general, SHAP and LRP agree on how to explain the skill of the BNN, thus meaning that in our work we do 
not have a “disagreement problem.” There are however some small differences, which can either be explained by 
the different ways in which these two techniques interpret skill or by the fact that they occur where there is high 
entropy in the BNN predictions reflecting the BNN's uncertainty in feature relevance. We have thus demonstrated 
that both techniques are helpful for understanding the BNN's interpretations of physical processes. Moreover, 
where the two techniques agree with each other and in particular also agree with physical intuition, this greatly 
improves the trustworthiness of the feature relevance explanations in the BNN and where the techniques differ 
between themselves and/or with physical intuition there is scope for further analysis and learning of both BNN 
and physical ocean processes.

5. Discussion and Conclusion
In this work, we have successfully applied a BNN and two different XAI techniques to explore the trustworthi-
ness of neural network analyses of ocean dynamical regime classifications. We have shown that using a BNN 
rather than a classical deterministic neural network adds considerable value to predictions, by making uncertainty 
analysis possible and allowing practitioners to make informed decisions as to whether to trust a prediction or 
conduct further investigation. Furthermore, our analysis of the entropy (i.e., uncertainty) of the BNN predictions 
shows the promising result that the predictions are notably more certain when they are correct than when they 
are incorrect.

Through our novel applications of the XAI techniques, LRP and SHAP, we have also shown that it is possible to 
explain the skill of a BNN, conduct uncertainty analysis of explainability values, and hence use XAI techniques 
to understand the extent to which the BNN is fit for purpose, where we here demonstrate this using comparison 
with theory. Our spatial representation of both the SHAP and LRP values means that the relevance of specific 
important dynamical processes such as the North Atlantic Drift can be identified, thereby improving the inter-
pretability and hence trustworthiness of the neural network predictions. This comparison with physical theory 
is important to ensure that what the BNN has learned is genuinely rooted in physical theory and in turn the skill 
of our BNN for sub-surface inference shows there is fundamental insight from surface variables to the in-depth 
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ocean. The latter is a very hard theoretical problem because it is highly underdetermined but our work shows that 
BNNs can make progress toward solving it. Specifically our work also takes the first steps toward understanding 
the uncertainties and the correlation between the input features that lead to this skill in sub-surface inference. 
Moreover, the spatial coherency of both the uncertainty and XAI assessments suggest that our framework could 
be leveraged to identify potential new physical hypotheses in areas of interest, guided by the BNN's ability to 
highlight hitherto unrecognized correlations in the input space. However, we stress that these correlations do not 
necessarily imply causation (Samek et al., 2021). Therefore for deployment of developed neural network applica-
tions for high-stakes decision making within geoscience, these correlations should only be used to postulate new 
hypotheses, which must then be explored using a well-conducted study driven by physical theory.

Our comparison of LRP and SHAP values has shown that in general they agree with each other as to which 
features are relevant in each area of the domain, building trust in the BNN predictions and their explanations. 
This is particularly striking given that SHAP is model-agnostic and does not consider any internal architecture 
of the network, exploring only how sensitive the predictions are to the removal of input features, whereas LRP 
uses a model-intrinsic approach based on the internal architecture of the network. These two different XAI tech-
niques do result in different levels of uncertainty in the feature relevances because LRP better captures the neural 
network model uncertainty and SHAP better captures BNN prediction sensitivity. Any disagreements in feature 
relevance also tend to occur due to these different approaches and/or in areas of high entropy. Knowledge of these 
disagreements is useful to practitioners as it highlights areas where the explanation of the BNN's skill is less 
trustworthy and may require further analysis. Furthermore the use of an ocean dynamical framework allows the 
accuracy of the XAI results in this work to be verified with physical intuition. It also enables a better understand-
ing of how SHAP and LRP explain skill which is beneficial to the machine learning community. Where there 
are differences between the XAI techniques and physical intuition, this provides another potential opportunity to 
learn more about physical theory, although with the same caveats discussed above.

We hypothesize that the good agreement with physical intuition demonstrated in this work is in part due to the 
overall normally distributed covariance structure of the problem, which is helpful for the k-means clustering and 
thus directly beneficial for the BNN training (Sonnewald et al., 2019). The methodology outlined in this work has 
many potential applications in geoscience and beyond, for more complex and nonlinear covariance structures. We 
note that whilst k-means clustering is an inherently linear algorithm, kernel tricks can be used to solve non-linear 
problems (Tzortzis & Likas, 2009). Besides classification problems, where the re-application of our methodology 
is straightforward, a promising research avenue is the use of XAI, augmented with uncertainty quantification, for 
regression problems. An example of high interest to the climate modeling community is subgrid scale parametri-
zation efforts for numerical models. So far, subgrid scale parametrizations based on neural networks have limited 
generalization capacities, especially in areas of the numerical model space that they are not explicitly trained 
on (Bolton & Zanna, 2019). A regression based XAI framework could thus accelerate the development of such 
techniques, because the reasons why the networks fail to generalize might be better understood for both specific 
local scale features such as where the Gulf Stream leaves the continental shelf and larger scale processes. In 
further work, we will benefit from the ongoing recent research developments in XAI for regression, for example, 
in Letzgus et al. (2021), and aim to apply our methodology to this more challenging problem.

Finally, we recommend that for trustworthy explainability results for more complex covariance structures, a BNN 
should be used along with one model-intrinsic XAI technique, like LRP and one model-agnostic XAI technique 
like SHAP, so as to consider both neural network model properties and output sensitivity. For an accurate and 
robust network, we would expect the similarities between the two XAI techniques to dominate and the differences 
to highlight areas that require further analysis, thus being of valuable use to practitioners and might hint at new 
scientific hypotheses.

Appendix A: LRP Figures
Figure 10 in Section 4.2.1 reveals the Layer-wise Relevance Propagation (LRP) values which have a consistent 
sign across the 25%, 50%, and 75% quantiles. However, there is also considerable variability across the ensemble 
of LRP values and thus to give a better idea of this uncertainty, we also include Figure A1 which shows the 25%, 
50%, and 75% quantiles of the LRP ensemble. Using this figure, we see, for example, that for many areas, the 
bathymetry gradients go from being strongly unhelpful at the 25% quantile to strongly helpful at the 75% quantile, 
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Figure A1. Layer-wise Relevance Propagation (LRP) values at the 25th, 50th (median), and 75th quantile of the ordered ensemble. Note that the ensemble is ordered 
separately for each feature, so as to more clearly show the uncertainty and range of the LRP values for each individual feature.
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showing a high degree of uncertainty. The figure also illustrates better the areas which are irrelevant to Bayesian 
Neural Network (BNN) predictions (i.e., where the LRP value is zero).

Appendix B: Applying Bayesian Neural Network-explainable AI Methodology to a 
2 m Temperature Day-Ahead Biases
For completeness, we also apply our Bayesian Neural Network-explainable AI (BNN-XAI) methodology to the 
problem of predicting 2 m temperature day-ahead bias. This allows us to check whether the uncertainty shown in 
the LRP values in Figure 10 is as a result of the specific problem considered in the main body of this work, or if 
it is present in other geoscience problems.

For our data set, we consider the 2 m temperature day-ahead bias between ECMWF's IFS day-ahead opera-
tional forecast and operational analysis. Bias-corrections are part of the standard statistical post-processing that 
is conducted to optimize the predictions of numerical weather prediction models. There is ongoing research 
into using statistical and machine learning methods for post-processing, summarized in Vannitsem et al. (2020). 
Moreover, neural networks have been successfully used to predict 2 m temperature biases in Ben Bouallègue 
et  al.  (2022), for example, To the best of our knowledge no thorough explainability analysis of these neural 

Figure B1. Layer-wise Relevance Propagation (LRP) values at the 25th, 50th (median), and 75th quantile of the ordered ensemble, for the prediction of day-ahead 
2 m temperature bias. Note that the ensemble is ordered separately for each feature, so as to more clearly show the uncertainty and range of the LRP values for each 
individual feature.
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network predictions has been conducted. Using LRP with regression problems is an under-researched area and 
thus we change the problem into a classification problem by binning the output data as in Clare et al. (2021). 
The input features for the BNN are then the 2 m temperature day-ahead forecast, orography and the land-sea 
mask. The training data set is 2011–2015, the validation data set is 2016 and the test data set is 2017. Figure B1 
shows the LRP values at the 25th, 50th (median), and 75th quantile of the ordered ensemble for all three features. 
They show that the ensemble of LRP values for this data set are even more uncertain than for the ocean data set 
used in the main body of this work. To highlight this uncertainty, in Figure B2, we show two examples of LRP 
values from the BNN ensemble, one where the 2m temperature day-ahead forecast is mostly helpful and the other 
where it is mostly unhelpful. Thus, without knowledge of the uncertainty in the LRP values, we could easily infer 
the wrong conclusions from the values. Hence we have once again shown that considering uncertainty greatly 
improves our ability to correctly interpret LRP values.

Data Availability Statement
The relevant code for the explainable Bayesian THOR framework presented in this work is preserved at Clare 
et al. (2022), available via CC-BY license. The ECCOv4r3 data is available to download at NASA (2022).
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